Solving a problem of integral lnx dx


Solving a problem of integral lnx dx

note : § as sign of integral


To solve  the equation of y=§ lnx dx, we
use 2  theorems ( theorems(1) and theorems(2)) of::


     -Theorem(1)  § u dv  = uv- §v du  (partial integral )

     -Theorem(2)  § u dv  =  §u (dv/dx) dx

     -Theorem(3) § uv dx  = § u d(§ v dx)


We can simply apply the technique using the theorems above!
 Example I.
          
y = §  lnx dx

step 1 . let  u=lnx,  v=x, following theorem(1)/partial integral, we obtain
   §lnx dx = xlnx - § x d(lnx)    

step 2let u=x,  v=lnx then dv/dx=1/x., following theorem(2) we obtain
                = xlnx - § x (1/x) dx   

step 3.                    
             = xlnx - 
§1  dx

step 4.                   
             = xlnx - x + c


Example II. 
               y = § x cosx dx

 step 1.  - following theorem(3), let u=x, v=cosx,  § cosx dx=sinx., we obtain
 § x cosx dx = § x  d(sinx)  

 step 2.   -  following theorem(1)/ partial integral, let u=x, v=sinx, we obtain
                  =  xsinx- § sinx dx 

 step 3.              
                 = xsinx- (-cosx) + c

 step 4.                    
                = xsinx + cosx + c
Good luck students